호기성 미생물을 활용한 가정용 음식물 소멸형 처리장치

2014년도 성능인증 적합성 심사

㈜바이오스타
2014. 05. 30
발표자 : 신행순
발표 순서

Ⅰ. 회사현황 및 연혁
Ⅱ. 개발 배경
Ⅲ. 제품의 특징
Ⅳ. 적용기술
Ⅴ. 핵심기술내용
Ⅵ. 제품의 성능
Ⅶ. 기술비교(차별성)
Ⅷ. 경제성
Ⅸ. 사업 실적
Ⅹ. 시장성/발전성 및 파급성

별첨자료

• 깨끗한 친환경 도시 만들기 음식물 쓰레기 문제 제로화 실천 시범사업보고서
• 음식물폐기류 처리방법의 문제점과 향후 응바른 처리방법
• 시험성적보고서 및 인증보유 현황
<table>
<thead>
<tr>
<th>회사명</th>
<th>주바이오스타</th>
<th>사업자번호</th>
<th>410-86-47695</th>
</tr>
</thead>
<tbody>
<tr>
<td>업 태</td>
<td>제조.도소매</td>
<td>종 목</td>
<td>음식물처리기</td>
</tr>
<tr>
<td>대표이사</td>
<td>박현영</td>
<td>법인번호</td>
<td>200111-0314826</td>
</tr>
<tr>
<td>대표전화</td>
<td>062-372-8588</td>
<td>자 본 금</td>
<td>1억</td>
</tr>
<tr>
<td>주 소</td>
<td>광주광역시 동구 독립로218 (수기동 16-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>주요생산품</td>
<td>가정용 음식물처리기(미생물분해소멸기). 종균제</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주요 지적재산권 현황

<table>
<thead>
<tr>
<th>특허 제10-1370014호</th>
<th>음식물쓰레기처리장치 외 4건</th>
</tr>
</thead>
<tbody>
<tr>
<td>디자인제30-0496354호</td>
<td>음식물쓰레기처리기 외 2건</td>
</tr>
<tr>
<td>상표 제40-0941437호</td>
<td>그린마더 외 6건</td>
</tr>
<tr>
<td>녹색기술인증서</td>
<td>GT-14-00057(환경부)</td>
</tr>
<tr>
<td>연구개발전담부서</td>
<td>제2013150416호(한국산업기술진흥협회)</td>
</tr>
<tr>
<td>벤처기업</td>
<td>제20110107944호(기술보증기금)</td>
</tr>
</tbody>
</table>
회사 연혁 1

<table>
<thead>
<tr>
<th>연도</th>
<th>주 요 사 항</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008.06</td>
<td>디자인 제30-0496354호, 제30-0496355호, 제30-0693279호 등록</td>
</tr>
<tr>
<td>2011.03</td>
<td>(주)바이오스타 설립</td>
</tr>
<tr>
<td>2011.03</td>
<td>특허 제10-1024561호 등록</td>
</tr>
<tr>
<td>2011.05</td>
<td>ISO9001, ISO14001 인증</td>
</tr>
<tr>
<td>2011.11</td>
<td>벤처기업 인증</td>
</tr>
<tr>
<td>2011.11</td>
<td>조달청 경쟁입찰 자격등록</td>
</tr>
<tr>
<td>2011.11</td>
<td>서울국제발명전시회 금상수상</td>
</tr>
<tr>
<td>2011.12</td>
<td>유망중소기업 인증</td>
</tr>
<tr>
<td>2012.12</td>
<td>일본 에코닉스 수출계약(25000대/년) 첫 수출 300대</td>
</tr>
<tr>
<td>2012.12</td>
<td>액상소멸방식인 가정용음식물처리기의 실증화 및 실용화 연구 논문발표</td>
</tr>
<tr>
<td>연도</td>
<td>주 요 사 항</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2013.02</td>
<td>상표 제40-0903259호, 제40-0903259호, 제40-1030152호 등록</td>
</tr>
<tr>
<td>2013.02</td>
<td>연구개발 전담부서 인증</td>
</tr>
<tr>
<td>2013.03</td>
<td>음식물쓰레기 처리기”소멸형” 환경부 인증(제2013-18호)</td>
</tr>
<tr>
<td>2013.07</td>
<td>음식물쓰레기감량화를 위한 생 분해성 종균제 개발 및 상용화 발표</td>
</tr>
<tr>
<td>2013.09</td>
<td>광주전남 중소기업청장표창</td>
</tr>
<tr>
<td>2013.10</td>
<td>450만불 수출계약 체결(광주시, 에코닉스)</td>
</tr>
<tr>
<td>2013.12</td>
<td>수출유망중소기업선정</td>
</tr>
<tr>
<td>2014.01</td>
<td>특허 제 10-1357079호, 제10-1343535호, 제10-1357781호, 제10-1370014호 등록</td>
</tr>
<tr>
<td>2014.03</td>
<td>특허 제10-2014-0024919호 (유지류 및 섬유소 생분해성 종균제 개발)출원</td>
</tr>
<tr>
<td>2014.03</td>
<td>ZERO 상표등록</td>
</tr>
<tr>
<td>2014.03</td>
<td>Green Mother 호주 상표등록</td>
</tr>
<tr>
<td>2014.04</td>
<td>녹색기술인증(GT-14-00057 환경부)</td>
</tr>
</tbody>
</table>
Ⅱ. 개발배경

Ⅱ- 1. 정책과 환경적인 배경

처리비의 경제적 손실

(08년 기준 전국적으로 연간 7천억원 소요되나, 시민들에게 거두어들인 음식물 폐기물 처리 수수료는 1천억원에 불과하여, 85%, 즉 8천억원은 세금으로 충당)

환경적 피해

2005년 매립, 소각 금지법 발표
2013년 해양투기 전면 금지
2014년 중량제 실시
개발배경

II-2. 음식물쓰레기 처리 과정

<table>
<thead>
<tr>
<th>구분</th>
<th>처리방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>발생원</td>
<td>일반주민센터</td>
</tr>
<tr>
<td></td>
<td>식사 후 설거지</td>
</tr>
<tr>
<td>수거</td>
<td>수거업체 위탁</td>
</tr>
<tr>
<td>운반</td>
<td>음식물쓰레기 수거</td>
</tr>
<tr>
<td>처 리</td>
<td>재활용 시설</td>
</tr>
<tr>
<td></td>
<td>음식물쓰레기 투입 - 선별 - 탈수 - 재활용 (사료, 퇴비)</td>
</tr>
</tbody>
</table>
Ⅱ . 개발배경

Ⅱ-3. 현행 음식물류 폐기물 처리방법 및 문제점

<table>
<thead>
<tr>
<th>수거·운반</th>
<th>지원 재활용</th>
</tr>
</thead>
<tbody>
<tr>
<td>협잡물</td>
<td>음폐수</td>
</tr>
<tr>
<td>소각</td>
<td>육상처리</td>
</tr>
<tr>
<td>매립</td>
<td>해양투기</td>
</tr>
<tr>
<td>바이오 가스</td>
<td>소각</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>자원화 문제점</th>
</tr>
</thead>
<tbody>
<tr>
<td>수집 및 처리시 2.3차 환경 오염 발생</td>
</tr>
<tr>
<td>건조/탈수시 발생하는 음폐수</td>
</tr>
<tr>
<td>- 하수종말처리장에서 처리되지거나 불법투기로 침술 수 발생</td>
</tr>
<tr>
<td>탈수 / 건조 후 발생되는 음식물쓰레기 자원화 문제 발생</td>
</tr>
<tr>
<td>음식물 자원화 리사이클링 정책 문제</td>
</tr>
<tr>
<td>- 지자체별 리사이클링 위해 많은 예산 투입하였으나 대부분 실패</td>
</tr>
<tr>
<td>- 처리 후 스레지 사후 처리 과정에서 2.3차 환경 오염의 주범</td>
</tr>
</tbody>
</table>
Ⅲ. 제품의 특징

- 미생물을 우드칩에 고정시켜 반영구적으로 사용할 수 있는 Biochip 기술적용

- 미생물 서식이 가능한 스폰지 담체와 네겐자임 통을 포함한 음식물 처리장치

- 가정에서 소량 발생되는 음식물쓰레기 발생 즉시 미생물 분해소멸 가능

- 2차 오염 물질을 배출하지 않는 기술적용 음식물과 음폐수를 동시에 처리할 수 있는 전환경적 처리장치
Ⅲ. 신청

기술 개요

특허 제10-1370014호
음식물 처리 장치

Ⅳ. 적용기술

입력의 신청바에 부착 사용
- 음식쓰레기 발생 즉시 소멸처리
- 상온에서 생물학적 처리가능 제품.

본 제품의 구성품과 특성
- 본체와 푸드넷, PCB와 트랜스
전원부와 솔레노이드 밸브로 구성됨.
V. 핵심기술내용

연결소켓
특허 제10-1357079호

■ 연결소켓
- 싱크죠와 교반통을 연결
- 역류하는 가스를 차단,
- 원만한 경사각을 주어 음식물이 교반통 내부로 쉽게 투입.
- 교반통 상단을 커버하는 상부커버에 간단히 세울 수 있도록 얇은 연결소켓.
- 상단의 거름망 밑 부분은 밀봉, 연결소켓과 밀착되어 개수대에서 사용되는 물이 교반통 내부로 유입 되는 것을 막아준다.
V. 핵심기술내용

배수시스템
특허 제10-1357781호

■ 배수시스템
- 미생물이 서식하는 교반통으로 매
 제가 섞인 어드렛물이 올라가지 못
 아도록 우회관로를 제공
- 연결소켓을 통해 출수된 물과 미생
 물로 분해된 물과 미생물은 야수도
 로 배출되도록 관로를 제공
V. 핵심기술 내용

자동차급수 및 세정 장치
특허 제10-1357781호

■ 자동급수장치
- 교반통 상측에서 프로그램에 따라 주기적으로 적정량의 수분을 공급하는 물을 분사하도록 하는 장치

■ 세정장치
- Food net 아단에 물 투입구를 설치하여 싱크조에서 사용되는 이드렛물을 투입함으로써 물 재활용과 세정하는 장치.
V. 핵심기술내용

교반기
특허 제10-1024561호

■ 교반기

- 결합 각도를 조절할 수 있도록 영명된 각도 안정부와, 상기 몸체 외주면에 영명되어 음식물쓰레기 교반하는 교반날개를 구비한 다수의 교반날개 부재와, 상기 회전축을 회전시키는 구동부를 구비한다.

- 교반 날개의 개수와 각도를 용이하게 조절할 수 있어 교반기의 교반효율을 향상시킬 수 있다.

- 음식물 쓰레기 처리기용 교반기는 별도의 고정 수단 없이 외전축에 교반 날개를 고정할 수 있어 분해와 조립이 편리하다.
V. 핵심기술내용

유지류 및 섬유소 종균제 개발
특허 제10-2014-0024919 호 출원

■미생물 고정화
가. 미생물 농축 및 우드칩 고정.
○ 유지류, 섬유소 분해 균주를 배양한 후 혼합하여 원심분리(x 8000g, 5min)를 통해 10배 농축하였다음.
○ 우드칩 10g씩 거즈에 넣고 봉인 다음, 농축시킨 배양액에 20시간 이상 담근 후 자연 건조하였다음.

난 분해성인 유지류 및 섬유소 음 분해 알수 있는 종균제를 개발, 우드칩에 고정화(바이오칩)하여 중간 보충이 없이 반영구적으로 사용 가능.
<table>
<thead>
<tr>
<th>구분</th>
<th>적용 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 소열화 방법 (기준)</td>
<td>습도 3050%, 온도는 2025℃. 처리장치가 안정화된 2개월 이후부터</td>
</tr>
<tr>
<td></td>
<td>- 환경부 고시 제 2011-3호에 의거 음식물 감량화처리장 품질인증규격에 준인 표준 음식물 쓰레기를 조제</td>
</tr>
<tr>
<td></td>
<td>- 수분사는 약취 농도를 감소 역할, 미생물의 증식을 위한 수분함량을 적절하게 유지, 교반은 음식물과 수분 그리고 미생물의 배양을 줄이기 위하여 진행. 정지 20분, 교반주기는 3분간 정회전과 역회전</td>
</tr>
<tr>
<td></td>
<td>- 분해율 24시간 후의 실업 장치의 무게를 측정하여 초기의 무게와 비교하여 분해율을 계산.</td>
</tr>
</tbody>
</table>

■ 입자의 크기는 곡물류를 제외하고는 약 3cm이하로 정하였다.

■ 분해율 (%) = \frac{투입된 음식물쓰레기 누적량(q) - 잔존하는 음식물쓰레기누적량(q)}{투입된 음식물쓰레기누적량(q)} \times 100
Ⅲ. 신청

기술개요

2. 분석방법

1) 수분 함량 측정
 - 증발접시를 깨끗이 세척하여 105℃의 건조기에서 건조시켜 양량이 된 증발접시에 시료 500g을 넣고 24시간동안 건조하여 암수중량과 건조중량의 차이로 수분 함량을 산출.

\[
\text{수분 (％)} = \frac{W_0 - W_2}{W_0 - W_1} \times 100
\]

\[W_0: \text{증발접시의 무게} \]
\[W_1: \text{시료와 증발접시의 무게} \]
\[W_2: \text{건조 후의 시료와 증발접시의 무게} \]

2) PH 측정
 - 시료 5g에 증류수 25 ml의 증류수를 가해 1시간동안 충분히 교반하여 충분히 혼합한 다음 원심 분리하여 상등액을 pH meter로 측정.

3) 환원당 함량 측정
 - 배양액내의 환원당은 Dinitro salicylic acid (DNS)법으로 측정.
 - DNS 시약은 Dinitro salicylic acid 10g과 페놀 2g을 1 L의 플라스크에 넣고 1% Sodium hydroxide 용액으로 1 L 가 될 때까지 교반시켜 충분히 용해시켜 제조.
 - 시료를 10배 익혀하여 여과시킨 여액 3ml를 시험관에 넣고 DNS 시약 3ml를 가하여 boiling bath에 가열하면서 40%의 Rochell salt 1ml를 가하였다.
 - 5분 동안 정액이 가열된 후 시험관을 으르는 수도물에 식힌 다음, 이것을 575 nm에서 흡광도를 측정하여 포도당으로 미리 정해진 검량선에서 환원당 함량을 산출하였다.
<table>
<thead>
<tr>
<th>구분</th>
<th>적용 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 분석방법</td>
<td>4) 왜약적 영장</td>
</tr>
<tr>
<td></td>
<td>화학적 산소요구량(COD, Chemical Oxygen Demand), 총질소(TN, Total nitrogen), 총인(TP, Total phosphorus)를 분석.</td>
</tr>
<tr>
<td></td>
<td>화학적 산소요구량 (COD)는 시료를 햇빛 산성화하여 과망간산칼륨 일정과량 을 넣고 30분간 수욕상에서 가열반응을 이킨 다음, 소비된 과망간산칼륨량으로 부터 양당아는 산소의 양을 측정하는 방법으로 분광광도계를 이용하여 측정.</td>
</tr>
<tr>
<td></td>
<td>그리고 시료 중 질소화합물을 알칼리성과 양산상의 존재 아예 120℃에서 유기물과 함께 분해하여 질산이온으로 산화시킨 다음 산업미세먼지에서 라이트 읍방도를 측정하여 질소를 측정하는 방법으로 분광광도계를 이용하여 측정.</td>
</tr>
<tr>
<td></td>
<td>총인(TP)는 과망산염모늄으로 산화 전처리하여 시료내 인산염을 정량(ortho-phosphate)영역으로 변화시킨 다음 총인산을 물리브렌산염모늄과 반응 시켜 생성된 물리브렌산 암모늄을 음절구업으로 증여시켜 생성된 형식의 읍방도를 660 nm에서 측정.</td>
</tr>
</tbody>
</table>
신청
기술 개요

<table>
<thead>
<tr>
<th>구분</th>
<th>적응 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 분석방법</td>
<td></td>
</tr>
<tr>
<td>5) 악취농도</td>
<td>- 악취농도는 검지관 (Gastec Model 801)를 사용하여 측정.</td>
</tr>
<tr>
<td></td>
<td>- 반복 실험이 통과 후 검지관으로 측정 가능한 가스가 H₂S라는 결론을 얻은 상태 에서 주로 왕용수소농도를 이용하여 본 실험의 악취발생정도를 판단.</td>
</tr>
<tr>
<td>6) 온도</td>
<td>- 디지털 온도계를 이용하여 음식물처리장치 내부 중앙의 온도를 매일 측정.</td>
</tr>
<tr>
<td>7) 수질분석 방법</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>항목</th>
<th>방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical oxygen demand (COD)</td>
<td>망간법 (산화법)</td>
</tr>
<tr>
<td>Biochemical oxygen demand (BOD)</td>
<td>적정법</td>
</tr>
<tr>
<td>Suspended solids (SS)</td>
<td>103-105℃ 건조법</td>
</tr>
<tr>
<td>Total nitrogen (T-N)</td>
<td>자외선 흡광도법</td>
</tr>
<tr>
<td>Total phosphorus (P)</td>
<td>종합정량법</td>
</tr>
<tr>
<td></td>
<td>(아스코프반산화원법)</td>
</tr>
<tr>
<td>DO</td>
<td>DO meter</td>
</tr>
<tr>
<td>pH</td>
<td>pH meter</td>
</tr>
<tr>
<td>Temperature</td>
<td>pH meter</td>
</tr>
</tbody>
</table>
Ⅶ. 제품의 성능

<table>
<thead>
<tr>
<th>구분</th>
<th>적용 방법</th>
</tr>
</thead>
</table>
| 2. 분석방법 | - 온도변화는 20~23°C
- 유기물농도가 높아짐에 따라 온도가 2~3°C정도 증가
- 100일 가동 후 음식물 처리장치의 무게를 비교분석 안 결과 조기 무게 (0 hrs) 보다 약 0.88 kg정도 증가한 것을 확인.
- 이는 생물유래의 난분해성 물질(Cellulose, Hemicellulose, Lignin 등)이 숭착된 결과라고 사료된다.
- 또한, 전체적으로 볼 때 음식물 쓰레기를 투입한 직후의 무게는 음식물쓰레기의 무게의 약 95%이상 감소.
- 100일 동안 음식물 처리장치에 투입한 음식물 쓰레기의 총 무게량은 75,162 Kg이었으며, 잔존 무게는 0.88 kg으로 총 감소량 무게비는 99%였다. |

![그림 6. 음식물 쓰레기 분해 양상](image-url)
VII. 제품의 성능

<table>
<thead>
<tr>
<th>구분</th>
<th>적용 방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 분석방법</td>
<td>□ 악취농도 저감 방법</td>
</tr>
<tr>
<td>9) 악취 농도 측정</td>
<td>- 36분간격 15초 (240~300cc) 물 분사를 통해 악취 저감</td>
</tr>
<tr>
<td></td>
<td>- 연결구 게이트와 거름망을 밀봉하여 2중 냄새 차단</td>
</tr>
<tr>
<td></td>
<td>- 유산균을 활용 냄새 저감</td>
</tr>
</tbody>
</table>

■ 결과

- 물 분사 전에는 왕화수소 농도가 2 ppm이하, 물 분사 후에는 음식물 투입 14시간 후에 7 ppm까지 상당량 높은 농도로 검출되었고 24시간 후에는 음식물 소멸로 인하여 왕화수소 가스가 검출되지 않았다.

- 물 분사 전보다 물 분사 후에는 왕화수소 농도가 일반적으로 높은 경향을 보인 것은 물 분사 후에 교반되는 과정에서 왕화수소가 배출되었기 때문이라고 사료됨.

- 악취 농도가 16시간이 지나면서부터는 점차 악취 발생의 양상이 반전되는 경향을 볼 수 있었다.

- 즉, 반응조기에는 음식물이 분쇄되면서 발생하는 악취가스의 저리가 우두 집이나 스폰지에 익착되었거나 유용미생물에 의하여 소멸되어 반응이 양호하게 진행되었을 것이라고 예측할 수 있다.
Ⅶ. 제품의 성능

<table>
<thead>
<tr>
<th>구 분</th>
<th>적용방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 분석방법</td>
<td>10) 반응 시간에 따른 유기물 분해도 측정</td>
</tr>
</tbody>
</table>

수소이온농도 (pH)의 경우 음식물을 투입한 직후에는 pH 3.3으로 매우 낮았으나, 미생물에 의한 분해에 의하여 점차 pH가 증가하여 24시간에는 pH 5.8를 유지하였다.

이는 화학적 산소요구량 (COD)과, 생물학적 산소요구량 (BOD), 총질소 (T-N), 총인 (T-N)의 농도가 점차적으로 감소하는 현상을 보아 무게감량 뿐만 아니라, 유기물 분해도 동시에 이루어지고 있음을 알인.

COD와 BOD의 초기농도는 1,400 mg/L와 2,900 mg/L로 BOD가 COD의 초기농도에 비해 2배정도 높은 농도를 보였으나, 24시간 후 COD는 84% 감소를 보였으며 BOD는 96%의 감소를 보였다.

염도 농도를 관찰해 보면 초기에는 0.8%에서 9시간 후에는 0.1%로 감소하는 것을 확인할 수 있었다. 이는 수분분사에 의한 역효과일 것이라고 판단하였다.
구분

2. 분석방법
11) 미생물의 수의 변화

<table>
<thead>
<tr>
<th>Time(days)</th>
<th>CFU (Colony Forming Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1E+00</td>
</tr>
<tr>
<td>5</td>
<td>1E+04</td>
</tr>
<tr>
<td>7</td>
<td>1E+05</td>
</tr>
<tr>
<td>12</td>
<td>1E+06</td>
</tr>
<tr>
<td>15</td>
<td>1E+06</td>
</tr>
<tr>
<td>40</td>
<td>1E+06</td>
</tr>
<tr>
<td>70</td>
<td>1E+06</td>
</tr>
<tr>
<td>100</td>
<td>1E+08</td>
</tr>
</tbody>
</table>

그림 9. 음식물 쓰레기 발생-소멸기간 동안의 미생물 세포수의 변화

음식물 처리장치내에 존재하는 음식물의 무게비가 감량된 결과로 미생물의 활동이 활발하게 음식물의 발효, 소멸반응에 영향을 미치게 되어, 미생물의 활동성을 검증하기 위해 CFU (Colony Forming Unit)에 관한 실험을 실시하였다.

그림 9는 음식물 쓰레기의 발효, 소멸반응에서의 시간에 따른 미생물농도 변화를 관찰한 것이다.

음식물 쓰레기의 발효, 소멸반응에 진행됨에 따라, 초기 미생물 세포수는 3.3 x 10^4 cell/ml에서 15일 후에는 5.1 x 10^6 cell/ml으로 증가. 이 결과는 음식물 점가 전, 우드침에 존재하는 미생물보다 약 155배 이상의 많은 수이다.

그러나 15일 이후부터는 증식 세포수가 크게 증가하지 않는 것으로 보아 음식물 처리 장치가 가동 15일 이후부터는 음식물의 분해가 활발히 진행되고 있는 양생의 초기단계일 것이라고 예상할 수 있다. 또한, 이와 같은 CFU의 농도 증가는 미생물 세포수의 증식을 나타내며 활발한 미생물의 활동성 지표로 활용할 수 있다.
제품의 성능

<table>
<thead>
<tr>
<th>구분</th>
<th>객용 방 법</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 분석방법</td>
<td>음식물 쓰레기 분해를 위해서 사용되는 미생물</td>
</tr>
</tbody>
</table>

12) 미생물 종류별 세포수의 변화

- 그림 10의 결과를 보면, 음식물 쓰레기의 일반미생물은 전반적으로 가동 초기부터 15일까지 서서히 증가하는 추세를 보였고, MRS-CFU로 표현된 유용미생물의 경우, 가동 초기에는 급격히 감소하다가 처리장의 안정화에 기인하여 점차 증가하는 추세를 보였다.

- 그림 10의 결과를 보면, 음식물 쓰레기의 일반미생물은 전반적으로 가동 초기부터 15일까지 서서히 증가하는 추세를 보였고, MRS-CFU로 표현된 유용미생물의 경우, 가동 초기에는 급격히 감소하다가 처리장의 안정화에 기인하여 점차 증가하는 추세를 보였다.

- 일반미생균, 유산균, 고품균은 초기의 자료보다 전반적으로 10-100배 높은 생균수를 유지.

- 음식물 처리장에서 투입된 음식물은 이들 미생균 및 교반에 의한 95%정도 소멸될 수 있음을 확인.

![그림 10. 미생균 종류별 세포수의 변화 diagram](image)
Ⅶ. 제품의 성능

2. 분석방법

13) 물질수지

- 모든 기질의 유입 부하량이 증가할수록 생물학적 CO₂ 발생량이 상대적으로 증가한다.
- 따라서, 물질수지에서 밝혀지지 않은 폐 유기물량은 상당량의 탄소형태로 존재할 가능성이 높을 것으로 판단.
- 게다가, 처리장치내의 바이오칩과 스폰지에 누적되어 있는 바이오매스를 간접적인 측정에 의하여 계산한다. 알지라도 반응기에 바이오매스 족적은 계속될 것이다.
- 그러므로, 바이오칩과 스폰지에 족적되어 물질수지 액체에 포함되지 않았던 바이오매스를 의식하지 않는 탄소 값과 폐유기물 값(FW\text{uncounted})으로 생물반응을 액계 알 수 있다.
- 이와 같은 물질수지력에 의하여 음식물 처리장치의 적정 배출 고영물을 계산하면 50g/266g × 100 = 18.8% 로 20% 이내로 설명될 수 있다.
기술비교(차별성)

<table>
<thead>
<tr>
<th>왕목</th>
<th>A사</th>
<th>B사</th>
<th>C사</th>
<th>신형제품 (㈜바이오스타)</th>
</tr>
</thead>
<tbody>
<tr>
<td>제품종류</td>
<td>디스포저</td>
<td>건조기</td>
<td>염기성미생물(소멸식)</td>
<td>오기성미생물(소멸식)</td>
</tr>
<tr>
<td>처리방법</td>
<td>10분이내은</td>
<td>16~20시간</td>
<td>24~120시간</td>
<td>3~24시간</td>
</tr>
<tr>
<td>처리시간</td>
<td>10kw미만</td>
<td>160w이상</td>
<td>125~240w</td>
<td>1.7~4.0w</td>
</tr>
<tr>
<td>전기사용량</td>
<td>0%</td>
<td>60%</td>
<td>70%</td>
<td>95~99%</td>
</tr>
<tr>
<td>간량요과</td>
<td>악취</td>
<td>과다발생</td>
<td>발생</td>
<td>제거</td>
</tr>
<tr>
<td>악취</td>
<td>악발생</td>
<td>과다발생</td>
<td>발생</td>
<td>제거</td>
</tr>
<tr>
<td>2차 부산물</td>
<td>과다발생</td>
<td>40%발생</td>
<td>30%발생</td>
<td>0%(소멸)</td>
</tr>
<tr>
<td>염분</td>
<td>제거불가</td>
<td>제거불가</td>
<td>제거불가</td>
<td>99%이상제거 (초기0.8,9시간후0.1%)</td>
</tr>
<tr>
<td>기타</td>
<td>80%의수</td>
<td>부피 줄임, 쓰레기형태</td>
<td>염분제거암달 2차 부산물제거</td>
<td>요율적 처리기술 (녹색기술인증)</td>
</tr>
<tr>
<td>가격(만원)</td>
<td>110</td>
<td>59</td>
<td>92</td>
<td>88</td>
</tr>
</tbody>
</table>
IX. 경제성

I. 제품가격 비교(쇼핑몰 등록가격)

<table>
<thead>
<tr>
<th>항목</th>
<th>가격</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>A사</td>
<td>110</td>
<td>설치형</td>
</tr>
<tr>
<td>B사</td>
<td>59</td>
<td>프리스탠딩</td>
</tr>
<tr>
<td>C사</td>
<td>92</td>
<td>프리스탠딩</td>
</tr>
<tr>
<td>신경제품</td>
<td>88</td>
<td>설치형</td>
</tr>
</tbody>
</table>

가격 절감 요인

- 설치와 조립을 쉽고 생산성증대 원가절감
- 프리스탠딩 방식: 설치비가 없는 대신 2차 처리비용 발생
- 설치형: 초기 설치비 10만원 추가 되나 2차 처리비용이 발생되지않음
Ⅸ. 경제성

Ⅱ. 공동주택 음식물쓰레기 처리 방법 비교표

<table>
<thead>
<tr>
<th>기본 방향</th>
<th>간단화</th>
<th>분리수거</th>
<th>소멸화</th>
<th>전환경처리</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>설거지 물</td>
<td></td>
<td></td>
<td>하수처리장</td>
</tr>
<tr>
<td>음식물 잔반 발생</td>
<td>음식물 잔반</td>
<td>미생물 분해 완전 소멸</td>
<td>환경기준에 적합한 물</td>
<td></td>
</tr>
</tbody>
</table>

본 기술 제품 설치시

대형 감량기 설치 시

음식물 잔반 발생

설거지 물

음식물 잔반

음식물 잔반 발생

중량제 봉투 보관

Elevator 이동

정해진 장소에 배출

비단봉투 및 용기보관

복도 / 계단 이동

대형 감량기

음식물쓰레기 투입

세대별 코드 인식

음식물쓰레기 감량화

감량된 쓰레기 배출

수거 / 운반

사료화

퇴비화

기타
IX. 경제성

III. 음식물쓰레기 제로화 실천운동 (종합)

<table>
<thead>
<tr>
<th>항목</th>
<th>실천운동 전·후 비교</th>
<th>실천운동 효과</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>전</td>
<td>후</td>
</tr>
<tr>
<td>발생량</td>
<td>2.6kg</td>
<td>1.0kg</td>
</tr>
<tr>
<td>배출량</td>
<td>2.6kg</td>
<td>X</td>
</tr>
<tr>
<td>처리비용</td>
<td>473원</td>
<td>24원</td>
</tr>
</tbody>
</table>
IX. 경제성

<table>
<thead>
<tr>
<th>항 목</th>
<th>기준</th>
<th>실천 운동 전</th>
<th>실천 운동 후</th>
</tr>
</thead>
<tbody>
<tr>
<td>처리 비용</td>
<td>월</td>
<td>평균 10,406원</td>
<td>평균 528원</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 기준: 급식일 월평균 22일 적용</td>
<td>- 기준: 201kwh <-> 300kwh</td>
</tr>
<tr>
<td>처리 방법</td>
<td>일</td>
<td>평균 2 - 3kg로 보관 후 배출</td>
<td>발생 즉시 싱크대에서 처리</td>
</tr>
<tr>
<td>배출 방법</td>
<td>격일</td>
<td>봉투에 수거 후 배출장소로 이동</td>
<td>배출장소로 이동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>음식물쓰레기 수거통에 배출</td>
<td></td>
</tr>
<tr>
<td>환경 문제</td>
<td></td>
<td>보관 및 이동 시 악취 발생</td>
<td>배출장소로 이동</td>
</tr>
<tr>
<td></td>
<td></td>
<td>각종 해충 및 병원성 세균발생</td>
<td></td>
</tr>
<tr>
<td>비용 예산</td>
<td>배출자</td>
<td>음식물쓰레기 수집 용기 및 봉투</td>
<td>음식물쓰레기 처리기</td>
</tr>
<tr>
<td></td>
<td>자치구</td>
<td>부대시설 운영비 및 용기 세척비</td>
<td>(미생물 분해·소멸형)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>수거·운반 인원 및 장비·시설</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>위탁처리비(음식물쓰레기재활용)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>음폐수처리분담금</td>
<td></td>
</tr>
</tbody>
</table>
VI. 사업실적

<table>
<thead>
<tr>
<th>연도</th>
<th>납품처</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008.05</td>
<td>(주)동양그린</td>
<td>50대 판매</td>
</tr>
<tr>
<td>2009.04</td>
<td>(주)다비젠</td>
<td>500대 판매</td>
</tr>
<tr>
<td>2011.05</td>
<td>일반고객</td>
<td>138대 판매</td>
</tr>
<tr>
<td>2011.06</td>
<td>그린마더 유통망</td>
<td>160대 판매</td>
</tr>
<tr>
<td>2011.08</td>
<td>그린마더 유통망</td>
<td>300대 판매</td>
</tr>
<tr>
<td>2012.10</td>
<td>일반고객</td>
<td>351대 판매</td>
</tr>
<tr>
<td>2012.12</td>
<td>일본수출</td>
<td>300대 판매</td>
</tr>
<tr>
<td>2013.08</td>
<td>광진구청</td>
<td>깨끗한 친환경 도시만들기 음식물 쓰레기 제로화 실천 시범운영</td>
</tr>
<tr>
<td>2013.10</td>
<td>일반고객</td>
<td>164대 판매</td>
</tr>
<tr>
<td>2013.11</td>
<td>일본수출</td>
<td>450만불 협정 계약</td>
</tr>
<tr>
<td>2014.06</td>
<td>그린마더 유통망</td>
<td>300대 판매</td>
</tr>
</tbody>
</table>
VII. 시장성/발전성 및 파급성

VII-1 국내외 시장현황

음식물쓰레기 일일 음식물 쓰레기 발생량 (톤/일)

적용대상
가정용 전국 1,200만 세대 대상
전국 175개 지자체 및 주민센터
세계시장에 수출

출처: 2010년 환경부 통계기준

<table>
<thead>
<tr>
<th>구분</th>
<th>일일 발생량</th>
<th>공공 시설수</th>
<th>구분</th>
<th>일일 발생량</th>
<th>공공 시설수</th>
<th>구분</th>
<th>일일 발생량</th>
<th>공공 시설수</th>
</tr>
</thead>
<tbody>
<tr>
<td>전국</td>
<td>13,429</td>
<td>103</td>
<td>대전</td>
<td>493</td>
<td>3</td>
<td>전북</td>
<td>582</td>
<td>6</td>
</tr>
<tr>
<td>서울</td>
<td>3,382</td>
<td>4</td>
<td>울산</td>
<td>301</td>
<td>3</td>
<td>전남</td>
<td>394</td>
<td>7</td>
</tr>
<tr>
<td>부산</td>
<td>774</td>
<td>3</td>
<td>경기</td>
<td>3,008</td>
<td>25</td>
<td>경북</td>
<td>602</td>
<td>9</td>
</tr>
<tr>
<td>대구</td>
<td>630</td>
<td>1</td>
<td>강원</td>
<td>317</td>
<td>11</td>
<td>경남</td>
<td>780</td>
<td>10</td>
</tr>
<tr>
<td>인천</td>
<td>690</td>
<td>4</td>
<td>충북</td>
<td>396</td>
<td>4</td>
<td>제주</td>
<td>186</td>
<td>3</td>
</tr>
<tr>
<td>광주</td>
<td>477</td>
<td>1</td>
<td>충남</td>
<td>416</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VIII-2 사업과 전략

사업과 계획

1. 개발 기술의 영업활동 활성화를 위하여 전국 시, 도 및 광역시를 기준으로 260개 지역에 각 지역마다 영업대리점 개설 - 전국 영업, A/S망 구축
2. 개발 기술을 활용하여 양우 건설될 동남아 지역, 중남미 지역, 중국지역의 도시 아파트 등 주택 응식물 쓰레기 관련시장에서의 터키사업 설계구명요소에 참여

<table>
<thead>
<tr>
<th>판매처</th>
<th>국가명</th>
<th>판매 단가 (천원)</th>
<th>예상 연간 판매량(개)</th>
<th>예상 판매기간(년)</th>
<th>예상 총판매금 (천원)</th>
<th>관련제품</th>
</tr>
</thead>
<tbody>
<tr>
<td>국내유통</td>
<td>연국</td>
<td>10</td>
<td>30,000</td>
<td>10</td>
<td>3,000,000</td>
<td>가정용미생물(100g)</td>
</tr>
<tr>
<td>에코닉스</td>
<td>일본</td>
<td>10</td>
<td>25000</td>
<td>10</td>
<td>2,500,000</td>
<td>가정용미생물(100g)</td>
</tr>
</tbody>
</table>

판매계획

(2014년 개발용료 예상년도) (2015년 개발용료 우 1년) (2016년 개발용료 우 2년)

<table>
<thead>
<tr>
<th>구분</th>
<th>사업과 제품</th>
<th>판매 계약 (백만원)</th>
<th>내수</th>
<th>수출</th>
<th>계</th>
<th>수입대체요(백만원)</th>
<th>고용창출(명)</th>
</tr>
</thead>
<tbody>
<tr>
<td>비용</td>
<td>가정용</td>
<td>가정용 및 소규모 업소용</td>
</tr>
<tr>
<td>판매 계약 (백만원)</td>
<td>500</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

판매 계약

<table>
<thead>
<tr>
<th>내수</th>
<th>수출</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,000</td>
<td>5,000</td>
<td>6,000</td>
</tr>
<tr>
<td>2,500</td>
<td>3,000</td>
<td>4,000</td>
</tr>
<tr>
<td>5,500</td>
<td>8,000</td>
<td>10,000</td>
</tr>
</tbody>
</table>

사업과 계획

- 개발 기술의 영업활동 활성화를 위하여 전국 시, 도 및 광역시를 기준으로 260개 지역에 각 지역마다 영업대리점 개설 - 전국 영업, A/S망 구축
- 개발 기술을 활용하여 양우 건설될 동남아 지역, 중남미 지역, 중국지역의 도시 아파트 등 주택 응식물 쓰레기 관련시장에서의 터키사업 설계구명요소에 참여
VIII-3. 음식물처리기의 기대효과

<table>
<thead>
<tr>
<th>구분</th>
<th>내용</th>
</tr>
</thead>
</table>
| 기술적 측면 | • 현재의 음식물 처리방법의 문제점 해소하는 획기적 소멸·분해 기술
• 음식물 쓰레기와 음폐수를 동시 처리가 가능한 기술 확보
• 2차 오염물질을 배출하지 않는 친환경적 기술
• 소규모 단위의 음식물 처리 가능한 기술 개발 |
| 경제·산업적 측면 | • 미생물 종균제를 이용하여 처리하므로 대규모 부지 불필요
• 신 종균제재는 음폐수로 인한 수질 저해 방지할 뿐만 아니라, 음식물 쓰레기 분해 기간의 단축으로 경제적인 부담 절감
• 음식물 쓰레기 자원화 시설을 위한 예산절감
• 발생하는 음식물 쓰레기의 신속처리로 순환형 친환경 사회달성 |
| 활용방안 | • 개발된 신 종균제재는 대량 생산을 통한 보급 및 판매
• 이 기술 확보로 추후 외국에 수출 창출
• 종균제를 이용한 음식물 쓰레기 최적화된 처리장치를 개발 |
깨끗한 친환경 도시 만들기
음식물쓰레기 문제 제로화 실천

주관 : 광진구 광장동 주민센터

먹을 만큼만 배식하여 음식물의 의한 경제적 낭비를 근본적으로 줄이고 발생하는 음식물쓰레기는 발생원에서 친환경적으로 처리하여 음식물쓰레기 배출로 발생하는 환경오염문제를 해결한다.
■ 음식물쓰레기 제로화 운동
깨끗하고 살기 좋은 친환경 도시를 조성하기 위한 음식물쓰레기 제로화(ZERO)사업과 관련하여 발생원에서 음식물쓰레기의 발생량을 절대적으로 줄이고 배출량을 제로화(ZERO)하기 위한 운동을 추진함.

■ 추진현황
■ 기 간 : 2013. 8. 1 ~ 9. 31(2개월)
■ 장 소 : 광진구 광장동 주민센터 구내식당
■ 급식인원 : 평균 15명
주민센터 음식물쓰레기 처리 과정

<table>
<thead>
<tr>
<th>구 분</th>
<th>처리 방 법</th>
</tr>
</thead>
<tbody>
<tr>
<td>발 생 원</td>
<td>광장동 주민센터</td>
</tr>
<tr>
<td></td>
<td>식사 후 청소</td>
</tr>
<tr>
<td>수 거 운반</td>
<td>광진구</td>
</tr>
<tr>
<td></td>
<td>음식물쓰레기 수거</td>
</tr>
<tr>
<td>처 리 사설</td>
<td>음식물쓰레기 투입 - 선별 - 탈수 - 재활용 (사료, 퇴비)</td>
</tr>
</tbody>
</table>
광장동 주민센터 음식물쓰레기 처리비용

<table>
<thead>
<tr>
<th>구분</th>
<th>단위</th>
<th>단가</th>
<th>적용 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>종량제 봉투</td>
<td>kg</td>
<td>25원</td>
<td>2013년 XX구 기준</td>
</tr>
<tr>
<td>수거 운반비</td>
<td></td>
<td>68원</td>
<td></td>
</tr>
<tr>
<td>위탁 처리비</td>
<td></td>
<td>89원</td>
<td></td>
</tr>
</tbody>
</table>

구내식당 일일 음식물쓰레기 처리비용

<table>
<thead>
<tr>
<th>급식 인원 (15명)</th>
<th></th>
<th>일 평균 음식물쓰레기 발생량 2.6kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>종량제 봉투</td>
<td></td>
<td>65원</td>
</tr>
<tr>
<td>수거 운반비</td>
<td>2.6kg</td>
<td>176.8원</td>
</tr>
<tr>
<td>위탁 처리비</td>
<td></td>
<td>231.4원</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>처리비용 합계</th>
<th>일</th>
<th>473원</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>월</td>
<td>10,406원</td>
</tr>
<tr>
<td></td>
<td>년</td>
<td>124,872원</td>
</tr>
</tbody>
</table>

금식일 월평균 22일 적용
음식물쓰레기 제로화 실천운동 준비

1. 일일 음식물쓰레기 발생량을 저울에 계량하여 급식인원과 기록판에 기록.
2. 음식물쓰레기는 일반쓰레기와 분류하여 음식물처리기에 투입하여 미생물 분해 소멸시킴.
 매일 음식물처리기 전기 사용량(디지털 전력 계량 계)을 기록판에 기록.
 음식물쓰레기 수거봉투 구매 중단 및 배출 쓰레기통 철거.
음식물쓰레기 미생물 분해 소멸 기

설거지에 사용한 물은 배수시스템을 통해 하수구로 바로 배출
음식물쓰레기 처리 및 발생량 기록

<table>
<thead>
<tr>
<th>전기사용량</th>
<th>급식 인원</th>
<th>발생량</th>
</tr>
</thead>
<tbody>
<tr>
<td>. 설거지 물은 바로 하수구로 배출</td>
<td>. 거름망에 걸린 음식물쓰레기 처리</td>
<td>음식물쓰레기 미생물 분해 · 소멸</td>
</tr>
</tbody>
</table>

배출된 물은 3갑수로 급브이가 잘 수 있을 정도

처리기 내부 (음식물)
■ 음식물쓰레기 제로화 활동 집계표

<table>
<thead>
<tr>
<th>일 자</th>
<th>요일</th>
<th>급 식 인 원</th>
<th>음식물쓰레기 발생량(kg)</th>
<th>전기 사용량(kwh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>계량기지침</td>
</tr>
<tr>
<td>8월 1일</td>
<td>목</td>
<td>12명</td>
<td>1.5kg</td>
<td>170.8</td>
</tr>
<tr>
<td>8월 2일</td>
<td>금</td>
<td>17명</td>
<td>0.5kg</td>
<td>171.2</td>
</tr>
<tr>
<td>8월 5일</td>
<td>화</td>
<td>15명</td>
<td>1.4kg</td>
<td>171.3</td>
</tr>
<tr>
<td>8월 6일</td>
<td>수</td>
<td>12명</td>
<td>0.8kg</td>
<td>171.4</td>
</tr>
<tr>
<td>8월 7일</td>
<td>목</td>
<td>14명</td>
<td>1.4kg</td>
<td>171.6</td>
</tr>
<tr>
<td>8월 8일</td>
<td>금</td>
<td>12명</td>
<td>1.0kg</td>
<td>171.7</td>
</tr>
<tr>
<td>8월 9일</td>
<td>월</td>
<td>14명</td>
<td>2.1kg</td>
<td>172.1</td>
</tr>
<tr>
<td>8월 10일</td>
<td>화</td>
<td>13명</td>
<td>0.8kg</td>
<td>172.2</td>
</tr>
<tr>
<td>8월 11일</td>
<td>수</td>
<td>15명</td>
<td>1.4kg</td>
<td>172.3</td>
</tr>
<tr>
<td>8월 12일</td>
<td>목</td>
<td>13명</td>
<td>0.6kg</td>
<td>172.6</td>
</tr>
<tr>
<td>8월 13일</td>
<td>금</td>
<td>17명</td>
<td>0.7kg</td>
<td>173.0</td>
</tr>
<tr>
<td>8월 14일</td>
<td>화</td>
<td>18명</td>
<td>0.8kg</td>
<td>173.1</td>
</tr>
<tr>
<td>8월 15일</td>
<td>수</td>
<td>15명</td>
<td>0.6kg</td>
<td>173.3</td>
</tr>
<tr>
<td>8월 16일</td>
<td>목</td>
<td>16명</td>
<td>1.2kg</td>
<td>173.4</td>
</tr>
<tr>
<td>8월 17일</td>
<td>금</td>
<td>15명</td>
<td>0.9kg</td>
<td>173.5</td>
</tr>
<tr>
<td>8월 18일</td>
<td>화</td>
<td>18명</td>
<td>2.4kg</td>
<td>173.6</td>
</tr>
<tr>
<td>8월 19일</td>
<td>수</td>
<td>16명</td>
<td>0.4kg</td>
<td>173.7</td>
</tr>
<tr>
<td>8월 20일</td>
<td>목</td>
<td>14명</td>
<td>0.2kg</td>
<td>173.8</td>
</tr>
<tr>
<td>8월 21일</td>
<td>금</td>
<td>16명</td>
<td>0.4kg</td>
<td>173.9</td>
</tr>
<tr>
<td>8월 22일</td>
<td>화</td>
<td>12명</td>
<td>0.4kg</td>
<td>174.0</td>
</tr>
<tr>
<td>일</td>
<td>요일</td>
<td>급 식 인 원</td>
<td>음식물쓰레기 발생량(kg)</td>
<td>전기 사용량(kwh)</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>9월 2일</td>
<td>월</td>
<td>13명</td>
<td>1.0kg</td>
<td>174.4</td>
</tr>
<tr>
<td>9월 3일</td>
<td>화</td>
<td>15명</td>
<td>1.3kg</td>
<td>174.6</td>
</tr>
<tr>
<td>9월 4일</td>
<td>수</td>
<td>13명</td>
<td>1.0kg</td>
<td>174.7</td>
</tr>
<tr>
<td>9월 5일</td>
<td>목</td>
<td>18명</td>
<td>0.9kg</td>
<td>174.8</td>
</tr>
<tr>
<td>9월 6일</td>
<td>금</td>
<td>18명</td>
<td>0.8kg</td>
<td>174.9</td>
</tr>
<tr>
<td>9월 9일</td>
<td>월</td>
<td>14명</td>
<td>1.2kg</td>
<td>175.3</td>
</tr>
<tr>
<td>9월 10일</td>
<td>화</td>
<td>17명</td>
<td>1.3kg</td>
<td>175.4</td>
</tr>
<tr>
<td>9월 11일</td>
<td>수</td>
<td>17명</td>
<td>1.5kg</td>
<td>175.6</td>
</tr>
<tr>
<td>9월 12일</td>
<td>목</td>
<td>14명</td>
<td>1.1kg</td>
<td>175.7</td>
</tr>
<tr>
<td>9월 13일</td>
<td>금</td>
<td>14명</td>
<td>0.9kg</td>
<td>175.8</td>
</tr>
<tr>
<td>9월 16일</td>
<td>월</td>
<td>15명</td>
<td>1.4kg</td>
<td>175.8</td>
</tr>
<tr>
<td>9월 23일</td>
<td>월</td>
<td>14명</td>
<td>1.0kg</td>
<td>175.9</td>
</tr>
<tr>
<td>9월 24일</td>
<td>화</td>
<td>11명</td>
<td>0.8kg</td>
<td>176.0</td>
</tr>
<tr>
<td>9월 25일</td>
<td>수</td>
<td>16명</td>
<td>1.6kg</td>
<td>176.0</td>
</tr>
<tr>
<td>9월 26일</td>
<td>목</td>
<td>13명</td>
<td>1.0kg</td>
<td>176.1</td>
</tr>
<tr>
<td>9월 27일</td>
<td>금</td>
<td>15명</td>
<td>0.9kg</td>
<td>176.3</td>
</tr>
<tr>
<td>9월 30일</td>
<td>월</td>
<td>17명</td>
<td>1.0kg</td>
<td>176.6</td>
</tr>
<tr>
<td></td>
<td>발생량 합계</td>
<td>548명</td>
<td>38.0kg</td>
<td>전력비 합계</td>
</tr>
<tr>
<td></td>
<td>평균</td>
<td>15명</td>
<td>0.1kg/인</td>
<td>사용량(kwh)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>전기요금(원)</td>
</tr>
</tbody>
</table>

※ 전기사용요금은 2~3단계(101~300kwh) 누진세 적용 평균 kwh당 단가 152.8원 기준
음식물처리기 전기요금 산출 표

<table>
<thead>
<tr>
<th>Kwh 기분요금 (원/호)</th>
<th>누진세 적용 전기 요금</th>
<th>3kwh</th>
</tr>
</thead>
<tbody>
<tr>
<td>부터</td>
<td>까지</td>
<td>기본요금</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>400원</td>
</tr>
<tr>
<td>101</td>
<td>200</td>
<td>890원</td>
</tr>
<tr>
<td>201</td>
<td>300</td>
<td>1,560원</td>
</tr>
<tr>
<td>301</td>
<td>400</td>
<td>3,750원</td>
</tr>
<tr>
<td>401</td>
<td>500</td>
<td>7,110원</td>
</tr>
<tr>
<td>500 이상</td>
<td>12,600원</td>
<td>690.8원</td>
</tr>
</tbody>
</table>

음식물처리기 전기사용량은 총사용량의 영향을 받는다

◆ 음식물처리기 전기사용량이 월 3kwh일 경우의 비교
 - 사용량이 240kwh인 가구는 음식물처리기 사용 전기요금은 549원
 - 사용량이 350kwh인 가구는 음식물처리기 사용 전기요금은 820원
음식물쓰레기 제로화 실천운동(종합)

실천운동 전·후 비교

<table>
<thead>
<tr>
<th>항목</th>
<th>실험운동 전·후 비교</th>
<th>실험운동 효과</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>전</td>
<td>후</td>
</tr>
<tr>
<td>발생량</td>
<td>2.6kg</td>
<td>1.0kg</td>
</tr>
<tr>
<td>배출량</td>
<td>2.6kg</td>
<td>X</td>
</tr>
<tr>
<td>처리비용</td>
<td>473원</td>
<td>24원</td>
</tr>
<tr>
<td>항목</td>
<td>기준</td>
<td>실천 운동 전</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 처리 비용 | 월 | 평균 10,406원
- 기준 : 급식일 월평균 22일 적용 | 평균 528원
- 기준 : 201kwh <> 300kwh |
| 처리 방법 | 일 | 평균 2 - 3kg로 보관 후 배출 | 발생 즉시 싱크대에서 처리 |
| 배출 방법 | 격일 | 봉투에 수거 후 배출장소로 이동
음식물쓰레기 수거통에 배출 | 무 |
| 환경 문제 | | 보관 및 이동 시 악취 발생
각종 악취 및 병원성 세균발생 | 무 |
| 비용 예산 | 배출자 | 음식물쓰레기 수집 용기 및 봉투
부대시설 운영비 및 용기 제외비
수거·운반 인원 및 장비·시설
위탁처리비(음식물쓰레기재활용)
음폐수처리분담금 | 음식물쓰레기 처리기
(미생물 분해·소멸형) |
■ 2013년 광주광역시 음식물 쓰레기 처리현황

<table>
<thead>
<tr>
<th>구분</th>
<th>양 (톤/년)</th>
<th>수수료 수입액 (천원)</th>
<th>수거 처리비용 (천원)</th>
<th>계</th>
<th>용역비 및 위탁처리비</th>
<th>처리 수수료</th>
<th>납부필증 제작비용</th>
</tr>
</thead>
<tbody>
<tr>
<td>12년기준</td>
<td>174,209</td>
<td>7,513,402</td>
<td>22,751,425</td>
<td>12,906,303</td>
<td>9,750,384</td>
<td>95,618</td>
<td></td>
</tr>
</tbody>
</table>

※ 운송 및 보관에 대한 문제 발생과 전처리등 2차, 간접처리비용 제외된 금액

※ 음식물 쓰레기 수거처리비용 1 TON = (22,751,425천원 + 7,513,402천원) 174,209 (톤/년) = 134천원 (톤/년)

■ 재활용 처리비용(퇴비화 및 사료화)

<table>
<thead>
<tr>
<th>구분</th>
<th>단가</th>
<th>총예산</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>쓰레기 수거처리비용</td>
<td>134천원 (톤/년)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>첨가재료 (톱밥, 옥수수, 가루, 쌀겨 등)</td>
<td>음식물쓰레기 1Ton 기준량 → 첨가재료 1Ton/월 x 150,000원/톤 x 12월/년 = 1,800 천원</td>
<td>1,964 천원 (톤/년)</td>
<td>부가세 별도</td>
</tr>
<tr>
<td>퇴비 및 미처리분 사료소각</td>
<td>1Ton x 30,000원 = 30,000원</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 전처리등 2차,3차등 간접처리비용 제외된 금액
미생물 종균제를 이용한 음식물쓰레기 처리비용

<table>
<thead>
<tr>
<th>구분</th>
<th>단가</th>
<th>총예산</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>쓰레기 수거처리비용</td>
<td>(0/년)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>미생물 투입 (년 1회 투입)</td>
<td>음식물쓰레기 1Ton 기준량 → 미생물농축액 100L x 1,000원/L x 1/년 = 100천원</td>
<td>280천원 (톤/년)</td>
<td>부가세 별도</td>
</tr>
<tr>
<td>종균제칩교환 (1회/1년)</td>
<td>1Ton = 150천원</td>
<td></td>
<td></td>
</tr>
<tr>
<td>염분축적으로 인한 종균제 소각(1회/1년)</td>
<td>1Ton x 30천원 = 30천원</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 전처리등 2차,3차등 간접처리비용 발생되지않음
※ a) 음식물 쓰레기 1kg에 미생물 10배 농축액 100ml 소요

●광주광역시 전체 음식물류 중 69%가 일반가정에서 배출 가만

120,204(톤/년)*134천원=16,107,336천원/년 - 7,513,402천원(수수료수입액)

광주시 지자체 지출액(53.4%)=8,593,934천원/년
■ 세대 및 1인당 발생량

1일 세대당 발생량: (330g*2.64=871g=0.87kg)=약 1kg
- 광주광역시 세대수: 555,538
- 인구수: 1,469,216
- 세대당 인구: 2.64
- 1인당 발생량: 1,469,216명/120,204톤=12.2톤/년=1톤/월=330g/일

■ ‘그린마더’음식물 처리기 사용시 기대효과

1년 : 555,538세대 * 1kg 음식물쓰레기 =555t/일=16,650t/월=199,800t/년
- 예산절감금액: 199,800t*134,000원=26,773,200,000원/년

※ 가정(세대), 쓰레기 수거처리 불필요, 보관중 부패로 인한 침출수 발생과 수질 오염방지 및 운송에 대한 여러 가지 문제점 해소등 2,3차 간접 처리비 절약

경비행기 35,052대 / 무게 = 199,800 톤
그린마더 는 가정의 오폐수 종말처리 시설

- 연계의 음식물 처리방법의 문제점 예소아는 임기적 소멸,분해기술
- 음식물쓰레기와음폐수를 동시에처리가 가능한 기술확보
- 2차 오염 무질을 배출하지 않는 친환경적 기술
- 그린마더 는 가정의 오폐수 종말처리 시설

1. 시간적 / 경제적 손실
 각 가정의 음식물쓰레기 처리를 위하여 소요되는 활동시간과 (편리성)

2. 정격소비전력량/ (3 Kw / 월)
 가정의 보통 누진세적용월/ 1,000원 이내 발생 (경제성)

3. 생물학적 처리방식
 칼날이나 건조 방식이 아닌 자연생물학적 소멸방식 (안전성)

4. 악취, 곤충, 위생
 계절에 다소 차이가 있지만 심한 경우 악취와 각종 곤충에 의한 피에와 수집암에
 불결함이 가장 심각한 스트레스 요인. (위생성)

5. 미생물분해 소멸효율
 빠른 시간에 동물성 지방과염유질을 분해하여 미생물끼리 상호 영양분
 공급언이 되어 물과 공기 완전 소멸시킴 (환경성)

6. 주변환경
 음식물 쓰레기통이 없는 깨끗함.(주방, 아파트, 거리) (행복성)
Ⅲ-1. 발생원 별 음식물쓰레기 구성 비율

<table>
<thead>
<tr>
<th>구분</th>
<th>발생원 분류</th>
<th>가정</th>
<th>음식점</th>
<th>집단급식소</th>
<th>웨딩·뷔페</th>
</tr>
</thead>
<tbody>
<tr>
<td>조리관련</td>
<td>68</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>먹고 남긴 음식물</td>
<td>20</td>
<td>68</td>
<td>43</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>먹지 않은 음식물</td>
<td>2</td>
<td>32</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>보관 후 폐기 식재료</td>
<td>12</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

음식물쓰레기 발생원 별 점유율

음식물쓰레기 발생유형 별 점유율
Ⅲ-2. 현행 음식물류 폐기물 처리방법 및 문제점

수거·운반

자원 재활용

[표]

- 협잡물
- 음폐수
- 고형분

- 소각
- 육상처리
- 사료

- 매립
- 해양투기
- 퇴비

- 바이오 가스
- 소각
- 매립

자원화 문제점

- 수집 및 처리시 2.3차 환경 오염 발생
- 건조 / 탈수시 발생되는 음폐수
 - 하수종말처리장에서 처리되지거나 불법투기로 허용수 발생
- 탈수 / 건조 후 발생되는 음식물쓰레기 자원화 문제 발생
- 음식물 자원화 리사이클링 정책 문제
 - 지자체별 리사이클링 정책이 없어 많은 예산 투입하였으나 대부분 실패
 - 처리 후 슬러지 사후 처리 과정에서 2.3차 환경 오염의 주범
Ⅲ-3. 발생원 중심의 문제해결 방법

<table>
<thead>
<tr>
<th>유용·조리과정</th>
<th>음식물류 폐기물</th>
</tr>
</thead>
<tbody>
<tr>
<td>음식물류 폐기물</td>
<td>먹고 남긴 음식물</td>
</tr>
<tr>
<td>57%</td>
<td>30%</td>
</tr>
</tbody>
</table>

분리수거
- 발생 억제·줄이기
- 활용
- 소멸

분리수거 기대효과
- 혼합배출 방지로 자원의 효율 및 가치 상승
- 2차 처리시설을 위한 예산 낭비 방지
- 음식물쓰레기에 의한 2차 환경오염 예방
- 올 폐수 발생 zero로 올 폐수 해양투기 문제 해결
- 음식물류 폐기물 처리 및 관리 안정화
Ⅲ-4. 향후 음식물류 폐기물 처리방법

◆ 가정(단독주택, 공동주택) 및 소형음식점

설거지 물

싱크대

음식물류 폐기물

미생물 분해 완전 소멸

환경기준적합한 물

히수 LINE

◆ 다량 배출업소(대형 음식점, 집단 급식소, 웨딩, 뷔페)

음식물류 폐기물

. 수분 : 84 ~ 85%

미생물 분해 소멸

수분증발 : 84% 감량

분해성유기물 대기방출 : 14%

년분해성물질 탐비율 : 2%
Ⅲ-5. 공동주택 음식물쓰레기 처리 방법 비교표

기본 방향
- 감량화
 - 음식물 잔반 발생
 - 음식물 잔반
- 분리수거
 - 음식물 잔반
- 소멸화
 - 미생물 분해 완전 소멸
- 전환경처리
 - 환경기준에 적합한 물

본 기술 제품 설치시
- 하수처리장

대형 감량기 설치 시
- 음폐수 육상 처리
- 음폐수 해양투기
- 사료화
- 퇴비화
- 기 타

설거지 물

하수처리장

음폐수 육상 처리

Elevator 이동

정해진 장소에 배출

세대별 코드 인식

음폐수 해양투기

2차 처리

음폐수 육상 처리

음폐수 육상 처리
Ⅲ-8. 음식물 처리기 설치후 기대 효과

1). 정부 및 지방자치단체의 음식물 쓰레기 처리 정책 방향 제고

2) 국물이 많은 우리나라 음식에 대한 친환경적 음식물 쓰레기 처리 방식인 미생물 발효 방식의 대중화 및 기술적 연구 활성화로 인한 제품 성능 발달 및 선진화 기대

3) 선진화된 음식물 처리기 도입을 통한 음식물 쓰레기 감소로 인한 온실가스 배출 저감.에너지 절약.지방예산 절감 기대됨.

4) 실내,외 주거환경개선으로 그린주택도시 확산

5) 수출 과 고용창출 기대
Ⅲ-9. 결론

1. 가정 및 소형 음식점: 소멸기를 활용 자체 소멸처리
 - 부폐되기전 음식물을 소멸처리로 음폐수 및 운송관 보관에 따른 2차 문제점 예방
 - 소량발생(1kg미만/일)으로 72시간 이상 보관에 따른 부패로 인한 수질오염 및 퇴비나 사료의 품질저하,

2. 대량 발생점: 3단계 분리수거
 1)녹색통(사료.퇴비): 요리를 거치지 않는 음식물(ex:사과껍질, 밥, 무우, 배추등)
 -수거업자 구입 (발생원의 수입원으로 동기 유발)
 2)노랑색통(동물사료): 요리를 거친 양질의 음식물
 -수거업자 구입 (발생원의 수입원으로 동기 유발)
 3)빨간색통(바이오가스 & 소멸): 부패된 음식물
 -배출자 부담
Ⅳ. 신청 기술 개요

- 미생물을 우드칩에 고정시켜 반영구적으로 사용할 수 있도록 한 Biochip과

- 미생물이 서식할 수 있는 스폰지 담체를 넣은 네겐자임 통을 포함한 음식물 처리장치로써,

- 가정에서 소량 발생되는 음식물쓰레기를 발생 즉시 미생물 분해소멸 처리함으로써

- 2차 오염 물질을 배출하지 않는 음식물과 음폐수를 동시에

- 처리할 수 있는 친환경적 기술과 처리장치
제품 소개

제품 소개

음식물 소멸원리

액상소멸 방식의 7·정량 음식물 처리기 환경부 산하기관 실증화 및 실용화 연구제품

특 징

음식물구성

1. 탄수화물
2. 단백질
3. 지질
4. 섬유질

미생물구성

1. 효모균
2. 방선균
3. 고추균
4. 유산균

미생물과 음식물 섭취 중용

음식물 쓰레기 분해

CO2 (기산화탄소)

H2O (물)

自治급수 및 세정장치

남새억제

물과 미생물로 배출
제품소개

친환경 미생물 분해 소독형 가정용 음식물 처리기

싱크대에 한번 버리기만 하면 끝～!

사용방법 및 소멸과정

1 Step
설거지가 끝난 후 음식물 쓰레기 투입만 하면 끝!

2 Step
싱크대와 일체형으로 묻은 배수시스템을 통해서 배출되며 음식물은 개수대에서 바로 기계로 투입된다.

3 Step
음식물쓰레기는 분해되어 물과 미생물로 배출된다.
VIII 음식물처리기의 기대효과

<table>
<thead>
<tr>
<th>구 분</th>
<th>내 용</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술적 측면</td>
<td>・현재의 음식물 처리방법의 문제점 해소하는 획기적 소명·분해기</td>
</tr>
<tr>
<td></td>
<td>・음식물 쓰레기와 음폐수를 동시 처리가 가능한 기술 확보</td>
</tr>
<tr>
<td></td>
<td>・2차 오염물질을 배출하지 않는 친환경적 기술</td>
</tr>
<tr>
<td></td>
<td>・소규모 단위의 음식물 처리 가능한 기술 개발</td>
</tr>
<tr>
<td>경제·산업적 측면</td>
<td>・미생물 종균제를 이용하여 처리하므로 대규모 부지 불필요</td>
</tr>
<tr>
<td></td>
<td>・신 종균제재는 음폐수로 인한 수질 저해 방지할 뿐만 아니라, 음식물 쓰레기 분해 기간의 단축으로 경제적인 부담 절감</td>
</tr>
<tr>
<td></td>
<td>・음식물 쓰레기 자원화 시설을 위한 예산절감</td>
</tr>
<tr>
<td></td>
<td>・발생하는 음식물 쓰레기의 신속처리로 순환형 친환경 사회달성</td>
</tr>
<tr>
<td>활용방안</td>
<td>・개발된 신 종균제재는 대량 생산을 통한 보급 및 판매</td>
</tr>
<tr>
<td></td>
<td>・이 기술 확보로 추후 외국에 수출 창출</td>
</tr>
<tr>
<td></td>
<td>・종균제를 이용한 음식물 쓰레기 최적화된 처리장치를 개발</td>
</tr>
</tbody>
</table>
■. 시험결과 보고서 및 인증현황
X-1 시험결과보고서 및 TEST

시험결과보고서
TBH-000111
(주방용 오물 분쇄기 고형물 배출물 시험)

국내 최초 “소멸형”
환경부 인증 2013-18호

2013. 03. 11.
시험정보요약

- **시험번호**: TBI-000111
- **시행체로**: 주방용 오염분해기 고형물 배출물 시험
- **시행기간**: 2013. 01. 28 ~ 2013. 03. 10
- **시행현장**: 환경부 인증 2013-18호

본 결과를 실현한 것으로부터 제공받은 시료에 대한 보고서로 제출합니다.

국내 최초 "소멸형"

환경부 인증 2013-18호

1. 시험 목적

이 시험의 목적은 의료처리가 제시한 주방용 오염 분해기를 대상으로 하여, "환경부고시 제2012-203호"에 제시된 시험방법에 따라 배출수 고형물 배출물을 시험하는데 있다.

2. 시험 기간 및 대상 장치

2.1. 시험 기간 (2013. 01. 28 ~ 2013. 03. 10.)

2.2. 대상 장치

이 시험은 의료처리가 제시한 주방용 오염분해기에서 발생되는 배출수를 대상으로 고형물 배출물을 시험하였으며, 장소는 한국환경과학시험연구원에서 실시하였다. 시험 대상장치 분해기의 전면 및 내부는 [그림 1]에서 제시하였다.

즉, 업체에서 제시한 주방용 오염문해기에 조제한 표준시료를 투입한 시험기준으로 1일 500g의 3일간 투입한 후, 10일 동안 배출수로 배출되어지는 모든 배출수를 대상으로 고형물 배출물을 산정하였다.
2.3 처리공정도

대상 수용용 오물 분쇄기는 소형박시의 분쇄기에이며, 일반 가정에서 식기 세척시 발생되
이는 분쇄는 처리 하수구로 배출시키고, 밑크기에서 사용되어지는 기름방에 정리지는 응
식물만을 밑크기 하단에 부착된 본 장치에 투입하여 액상처리물을 이용하여 소정하는
방식이다 [그림 2]

이 때, 소정시 발생되어지는 배출수는 정지 하단 배출구를 통해 배출되며, 이에
대한 상세한 공정도는 [그림 3]에서 제시하였다.

![분쇄기도](image1)

그림 4. 밑크기 음식물 투입구

![분쇄기도](image2)

그림 5. 대상장치 공정도

2.4 제품 사양

<table>
<thead>
<tr>
<th>항목</th>
<th>사양</th>
</tr>
</thead>
<tbody>
<tr>
<td>모델명</td>
<td>BCM-3000</td>
</tr>
<tr>
<td>전기전압</td>
<td>220V, 60 Hz</td>
</tr>
<tr>
<td>처리방식</td>
<td>액상 소정 방식</td>
</tr>
<tr>
<td>발효방식</td>
<td>하수구 감체용 방식</td>
</tr>
<tr>
<td>처리량</td>
<td>3.0 kg</td>
</tr>
<tr>
<td>처리시간</td>
<td>13 일 / 표준식 1,500 g</td>
</tr>
</tbody>
</table>

3. 표준시료 조제 및 시험방법

3.1 표준시료 조제

주방용 오물분쇄기에 투입되어지는 투입시료는 [환경부의 제2012-203호]에서 제시
한 표준시료를 조제하여 사용하였으며, 이 시험에 사용되어진 투입시료는 [그림 4]에서
제시하였다.

표준시료는 곡물류, 채소류, 과일류, 육류류로 구분하여 조제하였으며, 곡물류는 밥, 채
소류는 배추,감자,양배추,과일류는 사과,귤/오렌지,육류는 돼지고기 및 생선을 각각
사용하였으며, 조성비는 [표 2]에서 제시하였다.

이 시험에서 표준시료는 4개를 조제하였으며, 투입시료 건조무게 산정을 위하여 1개를
사용하고, 배출수의 건조무게 산정을 위하여 3개를 사용하였다.

3.2 시험방법

이 시험의 시험방법은 [환경부의 제2012-203호]에 따라 실시하였으며, 연속 3회
시험의 음식물 투입기 압력을 5회에 한하여 전문가의 관찰을 고려하여 1회를 제외한 2회, 3회
시험의 값을 산출할수하여 시험결과로 사용하였다.

시험시 밑크기의 정상작동 기름방 및 체수 배출구의 정상작동 세척시 발생되어지는 모든
패치는 대상 오물분쇄기를 통과하지 않고 직접 배출되어지는 것으로 확인됨에 따라, 초기
3일간은 표준시료를 24시간마다 1회씩 투여하여 대상장치의 내부에서 분비되어지는 물에 의해 배출되는 배출수량을 시험대상으로 하여 각각 1회, 2회, 3회의 고형물 배출율을 산정하였다. 또한, 3일 이후 투입된 표준시료의 분해가 이루어질 수 있도록 연속 10일간 대상장치를 계속 가동하였으며, 이 때 대상장치에서 발생되어지는 모든 배출수와 10일 후 대상장치에 종류수 40L을 투입시 발생되어지는 배출수를 합하여 3일 이후 고형물량을 산정하였다. 이 3일 이후 발생되어지는 고형물량 중 1/3의 양을 앞서 1회, 2회, 3회 고형물량에 각각 합산하여 산정된 2회 및 3회 고형물량을 산술평균하여 최종 배출 고형물량을 산정하였다.

이 시험시 대상장치에 강제로 투입되어지는 물은 음식물 투입시 투입구 개폐를 위하여 종류수 1L씩을 각각 사용하였으며, 최종 분해가 완료되었고 판단되어진 13일차 이후 내부를 세척하기 위한 세척수로 종류수 40L을 사용하였다.

이때, 고형물 배출을 산정하기 위해 사용되어지는 재산식은 아래와 같다.

고형물 배출율(%) = \[
\frac{\text{배출수에 포함된 고형물 무게}}{\text{투입된 음식물체적의 고형물 무게}} \times 100
\]
4. 시험결과

대상 주량용 오물 분해기를 사용하여 제시한 시험방법에 따라 분석한 결과, 다음과 같이 나타났다.

이제, 사용된 표준시료의 성상 및 무게는 [표 2]에서 제시하였다.

[표 2]에서 나타난 7.7와 같이 투입되었는 표준시료의 무게를 무게는 122.14 g으로 나타났으며, 이 값을 해중을 산정할 뿐만으로 사용하였다.

<table>
<thead>
<tr>
<th>구분</th>
<th>표준시료 조성비 및 무게시료 간조무게</th>
</tr>
</thead>
<tbody>
<tr>
<td>무게(원)</td>
<td>80.15</td>
</tr>
<tr>
<td>재소류</td>
<td>290.11</td>
</tr>
<tr>
<td>가시료</td>
<td>70.15</td>
</tr>
<tr>
<td>어육류</td>
<td>100.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>철수</th>
<th>고형물 무게(g)</th>
<th>고형물배출율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>시험 1 (2월차)</td>
<td>7.7</td>
<td>6.3</td>
</tr>
<tr>
<td>시험 2 (3월차)</td>
<td>8.7</td>
<td>7.1</td>
</tr>
<tr>
<td>시험 3 (3월차)</td>
<td>12.1</td>
<td>35.5</td>
</tr>
<tr>
<td>시험 1 / 2 (1) + (2)</td>
<td>22.3</td>
<td>18.3</td>
</tr>
<tr>
<td>시험 2 (2) (3) + (2)</td>
<td>23.3</td>
<td>19.1</td>
</tr>
</tbody>
</table>

5. 통합보고

이 사항은 토목과의 제시한 주량용 오물 분해기 (BGM-3000)를 대상으로 '환경부 고시 제2012-200호'에 따라 고형물을 배출율을 산정하였으며, 그 결과, 고형물 배출율은 18.7 %로 나타났다.

6. 참고문헌

6.1 환경부 고시 제2012-200호, 주량용오물분해기의 판매 및 사용규명
6.2 환경부 고시 제2011-160호, 개발물 품질시험기준
X-2 인증보유현황

논색기술 인증서

인증번호: 제 GT-14-00057호
키 관영: (주)바이오스타
대표자명: 박현영
주소: 광주 동구 독립로 218 (수기동)
기술명칭: 흡기설 비상설용을 활용한 소규모 음식물 쓰레기 장치 및 처리기술
품류번호: T100303

『저탄소 논색성장 기본법』제32조 및『 논색인증제 운영규정』 제27조에 의거하여 위의 기술을 논색기술로 인증합니다.

인증일자: 2014.4.18
유 효 기 간: 2014.4.18-2016.4.17

환 경 부 장 관

전기용품 안전 인증서

Electrical Appliances Safety Certificate

인증번호: H0070984-14001A
제조업체명: 바이오스타
제조일자: (Manufacturer)
주소: 광주 동구 독립로 218 (수기동)
상품명: (Product)
제품번호: BGM-3000
정격: 220 V-, 60 Hz, 21 W

这是我们根据电气设备安全认证法对上述电气设备的认证报告。

我们使用此电气设备安全认证证书对上述电器设备按照行政法规的要求。

2014년 4월 3일
한국가정전기전자시험연구원장

Korea Testing Certification

위의파란고리

1. 인증보유현황

품질경영시스템 인증서

인증번호: KQA-Q112607
회사명: (주)바이오스타
대표자: 박인성
사업자등록번호: 410-86-47695
소재지: 광주광역시 동구 북길로 218 (수지동)

위 업체에 대하여 아래와 같이 품질경영시스템을 인증합니다.

제조인증: 2011년 8월 20일
유효기간: 2011년 8월 20일 ~ 2014년 8월 19일
발행일자: 2012년 9월 26일

한국품질보증원

환경경영시스템 인증서

인증번호: KQA-E11596
회사명: (주)바이오스타
대표자: 박인성
사업자등록번호: 410-86-47695
소재지: 광주광역시 동구 북길로 218 (수지동)

위 업체에 대하여 아래와 같이 환경경영시스템을 인증합니다.

제조인증: 2011년 8월 20일
유효기간: 2011년 8월 20일 ~ 2014년 8월 19일
발행일자: 2012년 9월 26일

한국품질보증원
IX-3 인증보유현황

형식과면

다산생명과학원(주) 대표이사

‘인증과 보유를 소속 lokale 하는 비중도가’
IX-4 인증보유현황

특허증
CERTIFICATE OF PATENT

특허 제 10-1370014 호
(PATENT NUMBER)
등록일 2012년 01월 10일
출원일 2012년 05월 10일
특허분야
(ART OF THE INVENTION)

특허권자 (PATENTEE)
(주)바이오스타(200111-0******)

발명자 (INVENTOR)
신재성(601221-1******)

위의 발명은 "특허법"에 따라 특허등록원부에 등록 되었음을 증명합니다.

(This is to certify that the patent is registered on the register of the Korean Intellectual Property Office)

2014년 05월 26일

특허청장 김영
(COMMISSIONER, THE KOREAN INTELLIGENT PROPERTY OFFICE)

2013년 12월 13일
IX-6 인증보유현황

한국특허청

특허증

CERTIFICATE OF PATENT

특허 제 10-1024561호

PATENT NUMBER 10-1024561

발명의명칭(TITLE OF THE INVENTION)

음식물감색처리기금조합기

특허권자(PATENTEE)

(주)바이오스타(200111-0-*****)

상주 서구 성호동 907-71 1층

발명자(INVENTOR)

이재호(460810-1-******)

상주 서구 성호동 808번지 금호빌딩 301동 703호

위의 발명은 「특허법」에 의하여 특허등록부에 등록 되었음을 증명합니다.

(This is to certify that the patent is registered on the Register of the Korean Intellectual Property Office.)

2011년 06월 28일

벤처기업확인서

법인명 : (주)바이오스타

대표자 : 마현영

소재지 : 광주광역시 서구 장부대로 966번길 장부대로 964

확인유형 : 기술평가보증기관

평가기관 : 기술평가기금

유 효 기간 : 2011년 11월 16일 ~ 2013년 11월 15일

위 업체는 벤처기업육성에관한특별조치법 제35조의 규정에 의하여 벤처기업임을 확인합니다.

2011년 11월 16일
IX-7 인증보유현황

제 2013150416 호

연구개발전담부서 인정서

1. 전담부서명: 연구전담부서
 [소속기관명: (주)바이오스타]
2. 소 재 지: 광주 동구 수곡동 16-3
3. 신고 연월일: 2013년 06월 31일

"기초연구진흥 및 기술개발지원에 관한 법률" 제14조, 같은 법 시행령 제16조제2항 및 제27조제1항에 따라 위와 같이 기업의 연구개발전담부서로 인정합니다.

2013년 2월 8일
한국산업기술진흥협회

수출유망중소기업지정증

제 13광주-전남-53호

□ 업체 명: 바이오스타
□ 사업자등록번호: 410-86-47695
□ 생산품목: 음식물처리기, 음식물건반기
□ 주 소: 광주 동구 독립로 218
□ 대표자: 박현영

귀사를 중소기업수출지원센터의 설치 및 운영에 관한 규정에 따라 2013년도 수출유망중소기업으로 지정함

지정기간: 2013. 12. 1 ~ 2015. 11. 30

2013. 12. 16
광주 전남지방중소기업청장(수출지원센터장)
Thank You!